

Optimal-area Visibility Representations of Outer-1-plane Graphs

Visibility Representations

Vertices = axis-aligned rectangles Edges = axis-aligned segments, called visibilities

Visibility Representations

Vertices = axis-aligned rectangles

Edges = axis-aligned segments, called visibilities

Integer Grid = vertex corners + vertex-edge attachment points have integer coordinates

 $Area = Width \times Height$

Existence & Area Bounds

Not all graphs admit a VR

- Recognition is NP-hard [Shermer, 1996]
- All planar graphs admit a VR [Otten & van Wijk.,1978]

Existence & Area Bounds

Not all graphs admit a VR

Recognition is NP-hard [Shermer, 1996] All planar graphs admit a VR [Otten & van Wijk.,1978]

If a VR exists, how small can the grid be?

 $O((n + m) \times (n + m)) = O(n \times n)$ area is always sufficient Planar graphs may require $\Omega(n^2)$ area [Fößmeier et al., 1997] Series-parallel graphs have VRs in $O(n^{1.5})$ area [Biedl, 2013] Outerplanar graphs have VRs in $O(n \cdot \log n)$ area [Biedl, 2011]

Variations

bar-(j,k) VR

ortho-polygon (OP) VR

orthogonal box-drawings

bar-(j,k) VR = visibilities can see through vertices OP VR = vertices are general orthogonal polygons Orthogonal box-drawings = edges are general orthogonal poly-lines Optimal-area Visibility Representations of Outer-1-plane Graphs

Outer 1-planar graphs = can be drawn s.t. all vertices are on the boundary of the outer face and each edge is crossed at most once

Outer 1-plane graphs = with a fixed outer 1-planar embedding (i.e., fixed rotation scheme and fixed pairs of crossing edges)

Outer 1-planar graphs:

Outer 1-planar graphs:

Planar and linear time recognition [Auer et al., 2015; Hong et al., 2015]

Outer 1-planar graphs:

Planar and linear time recognition [Auer et al., 2015; Hong et al., 2015] May require $\Omega(n^2)$ area in any planar VR [Biedl, 2020]

Admit embedding-preserving orthogonal box-drawings with 2 bends per edge in $O(n \log n)$ area [Biedl, 2020]

Question

Can we always compute a VR of an outer-1-plane graph?

Question

Can we always compute a VR of an outer-1-plane graph? YES

Theorem[Biedl, Liotta, M., 2018]. A 1-plane graph admits a VR if and only if it contains no B-configurations, no W-configurations, and no T-configurations.

Question

Can we always compute a VR of an outer-1-plane graph? YES

Theorem[Biedl, Liotta, M., 2018]. A 1-plane graph admits a VR if and only if it contains no B-configurations, no W-configurations, and no T-configurations.

Can we achieve subquadratic area bounds?

Contribution: subquadratic bounds

drawing style	lower bound	upper bound
VR	$\Omega(n^{1.5})$	$O(n^{1.5})$
complexity-1 OP VR	$\Omega(n pw(G))$	$O(n^{1.48})$
1-bend orth. box-drawing	$\Omega(n pw(G))$	$O(n^{1.48})$

EMBEDDING-PRESERVING

Contribution: subquadratic bounds

drawing style	lower bound	upper bound
VR	$\Omega(n^{1.5})$	$O(n^{1.5})$
complexity-1 OP VR	$\Omega(n pw(G))$	$O(n^{1.48})$
1-bend orth. box-drawing	$\Omega(npw(G))$	$O(n^{1.48})$
VR	$\Omega(npw(G))$	$O(n^{1.48})$
bar-(1,1) VR	$\Omega(n pw(G))$	O(n pw(G))
planar VR	$\Omega(n(pw(G) + \chi(G)))$	$O(n(pw(G) + \chi(G)))$

EMBEDDING MAY NOT BE PRESERVED

Contribution: subquadratic bounds

drawing style	lower bound	upper bound
VR	$\Omega(n^{1.5})$	$O(n^{1.5})$
complexity-1 OP VR	$\Omega(n pw(G))$	$O(n^{1.48})$
1-bend orth. box-drawing	$\Omega(npw(G))$	$O(n^{1.48})$
VR	$\Omega(n pw(G))$	$O(n^{1.48})$
bar-(1,1) VR	$\Omega(n pw(G))$	O(n pw(G))
planar VR	$\Omega(n(pw(G) + \chi(G)))$	$O(n(pw(G) + \chi(G)))$

EMBEDDING MAY NOT BE PRESERVED

Theorem. For any N there is an n-vertex outer-1-plane graph with $n \ge N$ vertices such that any embedding-preserving VR has area $\Omega(n^{1.5})$

Theorem. For any N there is an n-vertex outer-1-plane graph with $n \ge N$ vertices such that any embedding-preserving VR has area $\Omega(n^{1.5})$

Lemma: Any VR Γ of $G_{h,\ell}$ is such that if a rectangle has height at most h, then Γ 's width and height are $\Omega(\ell)$

Lemma: Any VR Γ of $G_{h,\ell}$ is such that if a rectangle has height at most h, then Γ 's width and height are $\Omega(\ell)$

Key observation: In any embedding-preserving VR, there is at most one copy of $H_{h,\ell}$ on the left side and at most one copy on the right side of v_0 .

So one copy is such that all edges are vertical and, say, downward.

Lemma: Any VR Γ of $G_{h,\ell}$ is such that if a rectangle has height at most h, then Γ 's width and height are $\Omega(\ell)$

Proof by induction

Theorem. For any N there is an n-vertex outer-1-plane graph with $n \ge N$ vertices such that any embedding-preserving VR has area $\Omega(n^{1.5})$

To build G: fix $h = \ell = \lceil \sqrt{N} \rceil$; add N leaves at v_0 .

Consider any VR Γ of G. Since $\deg(v_0) > N$, W (or H) is $\Omega(N)$.

If the height of a rectangle is more than $h = \sqrt{N}$ we are done, else by the previous lemma again the height is $\Omega(\ell) = \Omega(\sqrt{N})$.

Contribution

drawing style	lower bound	upper bound
VR	$\Omega(n^{1.5})$	$O(n^{1.5})$
complexity-1 OP VR	$\Omega(npw(G))$	$O(n^{1.48})$
1-bend orth. box-drawing	$\Omega(n pw(G))$	$O(n^{1.48})$
bidir. bar VR	$\Omega(n^2)$	$O(n^2)$
VR	$\Omega(n pw(G))$	$O(n^{1.48})$
bar-(1,1) VR	$\Omega(npw(G))$	O(n pw(G))
planar VR	$\Omega(n(pw(G) + \chi(G)))$	$O(n(pw(G) + \chi(G)))$

EMBEDDING MAY NOT BE PRESERVED

Theorem. Every *n*-vertex outer-1-plane graph has an embedding-preserving VR of area $O(n^{1.5})$.

It is enough to show that the height is ${\cal O}(n^{0.5})$

It is enough to show that the height is $O(n^{0.5})$

Let G be a maximal-planar outer-1-plane graph The weak dual $\overline{G^*}$ of the planar skeleton \overline{G} of G is a tree of degree at most four

It is enough to show that the height is ${\cal O}(n^{0.5})$

Let G be a maximal-planar outer-1-plane graph The weak dual $\overline{G^*}$ of the planar skeleton \overline{G} of G is a tree of degree at most four

Idea: exploit tools known for so-called LR-drawings of binary trees

Theorem [Chan, 2002]. Let p = 0.48. Given any ordered binary rooted tree T of n vertices, there exists a root-to-leaf path π such that for any left subtree α and any right subtree β of π , $|\alpha|^p + |\beta|^p \leq (1 - \delta)n^p$, for some constant $\delta > 0$.

Theorem [Chan, 2002]. Let p = 0.48. Given any ordered binary rooted tree T of n vertices, there exists a root-to-leaf path π such that for any left subtree α and any right subtree β of π , $|\alpha|^p + |\beta|^p \leq (1 - \delta)n^p$, for some constant $\delta > 0$.

Theorem [Biedl et al., 2021]. Let p = 0.48. Given any ordered binary rooted tree T of n vertices, there exists a root-to-leaf path π such that for any left subtree α and any right subtree β of π , $|\alpha|^p + |\beta|^p \leq (1 - \delta)n^p$, for some constant $\delta > 0$.

High-level plan;

- $\bullet\,$ Pick a path π in $\overline{G^*}$ that satisfies the theorem
- Construct a drawing of height h(F), where F is the size of $\overline{G^*}$, such that

$$h(F) = \max_{|\alpha|^p + |\beta|^p \le (1-\delta)n^p} \{h(|\alpha|) + h(|\beta|)\} + O(\sqrt{F})$$

One can verify that $h(F) \in O(\sqrt{F}) \in O(\sqrt{n})$ We prove by induction that $h(F) \leq \frac{12}{\delta}\sqrt{F} - 7$ $h(F) = \max_{\alpha,\beta} \{h(|\alpha|) + h(|\beta|)\} + 11\sqrt{F} + 7 \leq \frac{12}{\delta}\sqrt{|\alpha|} + \frac{12}{\delta}\sqrt{|\beta|} + 11\sqrt{F} - 7 \leq \frac{12}{\delta}(1-\delta)^{0.5/p}\sqrt{F} + 11\sqrt{F} - 7 \leq \frac{12}{\delta}(1-\delta)\sqrt{F} + 11\sqrt{F} - 7 = \frac{12}{\delta}\sqrt{F} - \sqrt{F} - 7 \leq \frac{12}{\delta}\sqrt{F} - \sqrt{F} - 7 \leq \frac{12}{\delta}\sqrt{F} - 7$

Lemma. Let G be an outer-1-plane graph. Then it admits an embedding-preserving VR that is a $TC_{\sigma,\tau}$ -drawing of height h(F).

Lemma. Let G be an outer-1-plane graph. Then it admits an embedding-preserving VR that is a $TC_{\sigma,\tau}$ -drawing of height h(F).

Proof by induction on FBase case with F = 1 and h(1) = 3 is trivial

We first draw straight the primal graph P_{π} of π

We first draw straight the primal graph P_{π} of π We next merge recursively computed drawings of subgraphs hanging at π

We first draw straight the primal graph P_π of π

We next merge recursively computed drawings of subgraphs hanging at π

Problem: the drawing is not a $TC_{\sigma,\tau}$ -drawing

We further decompose the graph. The cap is the outer-1-path that contains s, t and all vertices adjacent to s and t.

A $TC_{\sigma,\tau}$ -drawing of C and of its hanging subgraphs can easily be computed.

We further decompose the graph. The cap is the outer-1-path that contains s, t and all vertices adjacent to s and t.

The handle is the part of P_{π} not in C.

A $TC_{\sigma,\tau}$ -drawing of C and of its hanging subgraphs can easily be computed.

We may need to extract k > 1 consecutive caps, for some parameter k.

We may need to extract k > 1 consecutive caps, for some parameter k.

We may need to extract k > 1 consecutive caps, for some parameter k.

Patching together the drawing of the cap(s) together with a drawing of the handle is the main challenge.

We need an ad-hoc construction that requires a number of extra rows that depends on the maximum number of edges (D) used to attach these special subgraphs.

One can show that the height is then

 $h(|\alpha|) + h(|\beta|) + 3k + D + 4 \le h(F)$ by choosing $k \le \sqrt{n} + 1$.

Open Problems

